General Description

The MAX9650/MAX9651 are single- and dual-channel VCOM amplifiers with rail-to-rail inputs and outputs. The MAX9650/MAX9651 can drive up to 1300mA of peak current per channel and operate up to 20V.

The MAX9650/MAX9651 are designed to source and sink a high current quickly to hold the VCOM voltage stable in large TFT-LCD panels.

The MAX9650/MAX9651 feature 40V/ μs slew rate and 35MHz bandwidth to quickly settle outputs for 120Hz frame rate and full HD television.

The MAX9650/MAX9651 feature output short-circuit protection and thermal shutdown. These devices are available in exposed pad packages for excellent heat dissipation.

Applications

TFT-LCD Panels Instrument Control Voltage Sources

Features

- 1300mA Peak Output Current
- Rail-to-Rail Inputs and Outputs
- Operates Up to 20V
- ♦ 40V/µs Slew Rate
- ♦ 35MHz Bandwidth
- 5mA Quiescent Current per Channel
- Excellent Heat Dissipation (Exposed Pad)


AMPS PER PIN-PART **TOP MARK** PACKAGE PACKAGE MAX9650AZK+ 5 SOT23 ADSI 1 MAX9650AUA+ 1 8 µMAX-EP* AABI MAX9650ATA+ 1 8 TDFN-EP* BKX MAX9651AUA+ 2 AABH 8 µMAX-EP* MAX9651ATA+ 2 8 TDFN-EP* BKY

Note: All devices are specified over the -40°C to +125°C operating range.

+Denotes a lead-free/RoHS-compliant package. *EP = Exposed pad.

Typical Operating Circuit

Ordering Information

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{DD} to GND) Any Other Pin to GND	
IN_+/IN (current)	
OUT_ (current)	1.3A
Continuous Power Dissipation (TA	
5-Pin SOT23 (derate 3.7 mW/°C	C above +70°C)297.4mW
8-Pin µMAX-EP (derate 12.9mV	//°C
above +70°C)	1030.9mW
8-Pin TDFN-EP (derate 23.8mW	
above +70°C)	1951.2mW
	//°C

Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{DD} = 19V, V_{GND} = 0, V_{CM} = V_{OUT} = V_{DD}/2, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CO	NDITIONS	MIN	ТҮР	MAX	UNITS
Supply Voltage Range	V _{DD}	Guaranteed by PS	RR	6		20	V
Quiescent Current	IDD	Per channel			3.7	8	mA
High Output Voltage	Vон	$I_H = +5mA$, $V_{IN} = V$	√DD	VDD - 0.30	V _{DD} - 0.05		V
Low Output Voltage	Vol	I _L = -5mA, V _{IN} = 0		0.05	0.30	V	
Input Offect Veltage	Vaa	$T_A = +25^{\circ}C$		-14	3.5	+14	V
Input Offset Voltage	Vos	$T_A = -40^{\circ}C \text{ to } + 125$	ō°C	-17		+17	
		$I_{OUT} = 0$ to -80mA			+0.2		
Load Regulation	LR	$I_{OUT} = 0$ to $+80mA$	١		-0.2		mV/mA
Input Bias Current	IFB	At $V_{IN} = 9.5V$			0.01	1	μA
Voltage Gain	Av	$A_V = 1V/V, R_L = 10$	θkΩ, C _L = 50pF	0.99		1.01	V/V
Power-Supply Rejection Ratio	PSRR	$V_{DD} = 6V$ to 20V, V	/ _{CM} = V _{OUT} = 3V	70	95		dB
Common-Mode Input Voltage Range	CMVR	Inferred from CMR	R test	0.5		V _{DD} - 0.5	V
Common-Mode Rejection Ratio	CMRR	$0.5V \le V_{CM} \le V_{DD}$	- 0.5V	60	80		dB
		Vout = 9.5V	MAX9650AZK+	20			
Continuous Output Current	IO	(Note 2)	MAX965_AUA+	80			mA
Transient Peak Output Current	I _{PK}	(Note 3)			±1.3		A
Bandwidth	BW	-3dB			35		MHz
Slew Rate	SR	4V step, C _L = 50pl	$=$, R _L = 10k Ω , A _V = +1V/V		40		V/µs
Settling Time	ts	Settling to 0.1% of $R_S = 2.2\Omega$, $C_S = 0$	V _{OUT} , I _L = 0 to 1000mA, 1µF (Figure 1)		2.0		μs

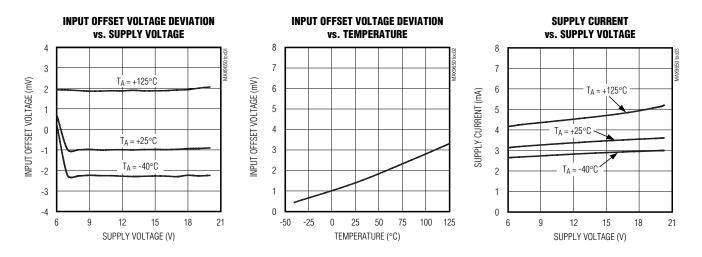
ELECTRICAL CHARACTERISTICS (continued)

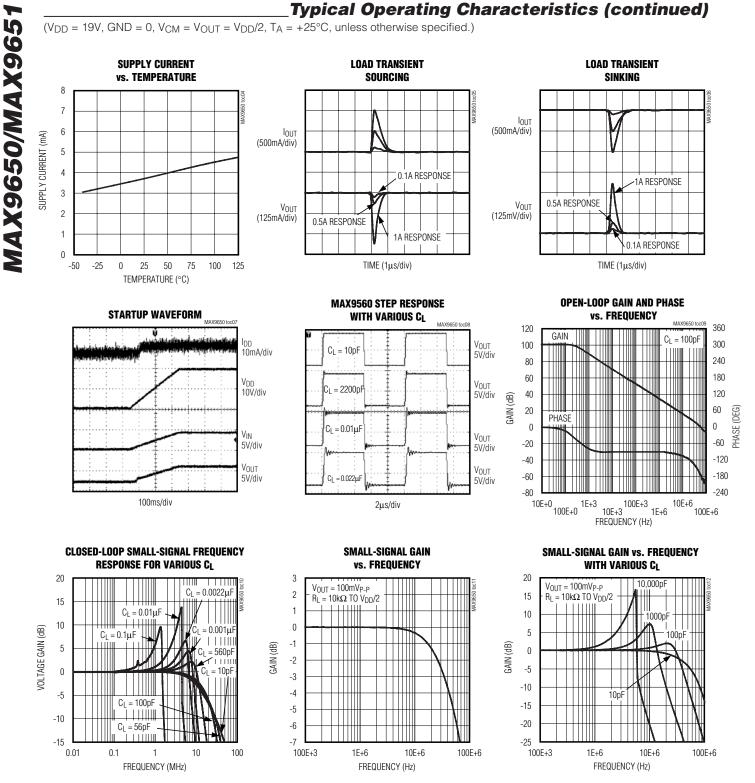
(V_{DD} = 19V, V_{GND} = 0, V_{CM} = V_{OUT} = V_{DD}/2, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Maximum Load Capacitance	CLOAD	(Note 4)		150		nF
Noninverting Input Resistance	R _{IN+}	(Note 5)		100		MΩ
Inverting Input Resistance	R _{IN-}	(Note 5)		100		MΩ
Input Capacitance	CIN			3		pF
Thermal Shutdown				+170		°C
Thermal Shutdown Hysteresis				15		°C

Note 1: All devices are 100% production tested at $T_A = +25^{\circ}C$. All temperature limits are guaranteed by design.

Note 2: Continuous output current is tested with one output at a time.


Note 3: See the Thermal Shutdown with Temperature Hysteresis section.


Note 4: A series resistor can extend load capacitance range. The settling time can be optimized by a small series resistance. See the *Applications Information* section for more information.

Note 5: Inputs are protected by back-to-back diodes.

Typical Operating Characteristics

(V_{DD} = 19V, GND = 0, V_{CM} = V_{OUT} = V_{DD}/2, T_A = +25°C, unless otherwise specified.)

M/IXI/M

4

Pin Description

	PIN							
MAX	MAX9650		NAME	FUNCTION				
SOT23	μΜΑΧ	MAX9651						
1	6	1	OUTA	VCOM Output A				
2	4	4	GND	Ground				
3	3	3	INA+	Positive Input A				
4	2	2	INA-	Negative Input A				
5	7	8	V _{DD}	Positive-Supply Input. Bypass V_{DD} to GND with a $0.1\mu\text{F}$ capacitor as close as possible to the device.				
_	_	5	INB+	Positive Input B				
_	—	6	INB-	Negative Input B				
—	_	7	OUTB	VCOM Output B				
_	1, 5, 8		N.C.	No Connection. Not internally connected.				
_		_	EP	Exposed Pad. EP is internally connected to GND. Connect EP to GND.				

Detailed Description

The MAX9650/MAX9651 operational rail-to-rail input/output amplifiers hold the VCOM voltage stable while providing the ability to source and sink a high current quickly (1.3A) into a capacitive load such as the backplane of a TFT-LCD panel.

Thermal Shutdown with Temperature Hysteresis

The MAX9650/MAX9651 are capable of high output currents and feature thermal-shutdown protection with temperature hysteresis. When the die temperature reaches +170°C, the device shuts down. When the die cools down by 15°C, the device turns on again. In a TFT-LCD application, the duty cycle is very low. Even with high values of voltage and current, the power dissipation is low and the chip does not shut down.

Applications Information

Output Load

The MAX9650/MAX9651 are designed to drive capacitive loads. A small value of series resistance improves the performance of the device to ensure stability and fast settling with very large or very small capacitive loads. In many cases, this resistance is already present due to connection resistance in the wiring and no additional physical resistor is necessary.

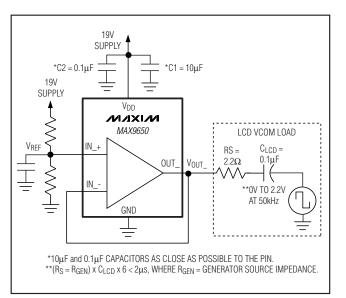


Figure 1. Settling Time Test Circuit

Power Supplies and Bypass Capacitors

The MAX9650/MAX9651 operate from a 9V to 20V single supply or from ± 4.5 V to ± 10 V dual supplies. Proper supply bypassing ensures stability while driving high transient loads. The MAX9650/MAX9651 require a minimum 10µF (C1) and 0.1µF (C2) power-supply bypass capacitors placed as close as possible to the power-supply pin

MAX9650/MAX9651

 $(V_{DD}).$ See Figure 2. For dual-supply operation, use $10\mu F$ and $0.1\mu F$ bypass capacitors on both supplies (V_DD and GND) with each capacitor placed as close as possible to V_DD and GND.

Layout and Grounding

The exposed pad on the μ MAX® package provides a low thermal resistance for heat dissipation. Solder the exposed pad to a ground plane for best thermal performance. Do not route traces under these packages. For dual-supply operation, the exposed pad (EP) can be electrically connected to the negative supply or it can be left unconnected.

Chip Information

PROCESS: BICMOS

 μMAX is a registered trademark of Maxim Integrated Products, Inc.

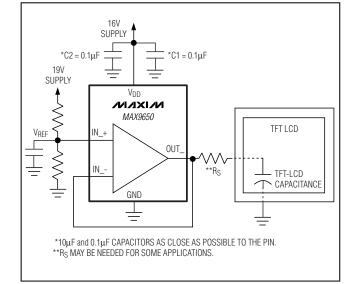
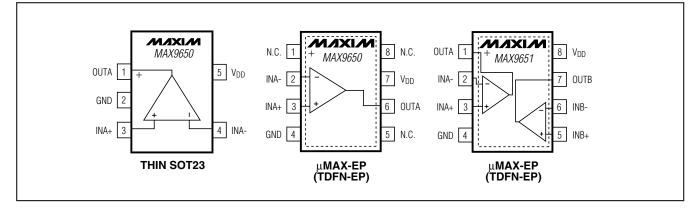
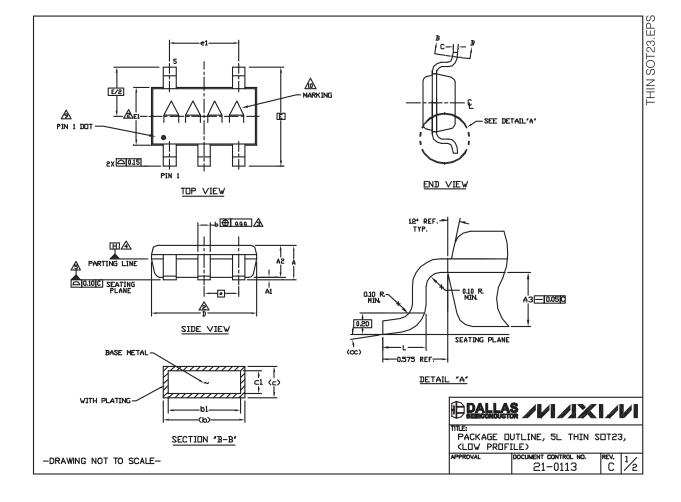



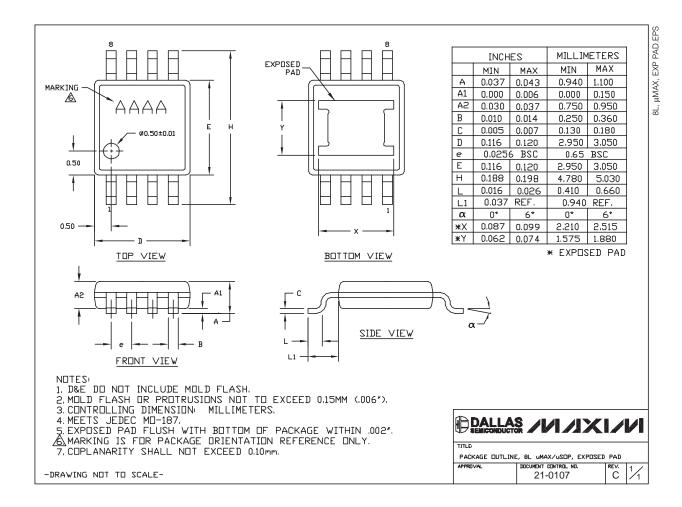
Figure 2. Typical TFT-LCD Backplane Drive Circuit


Pin Configurations

Package Information

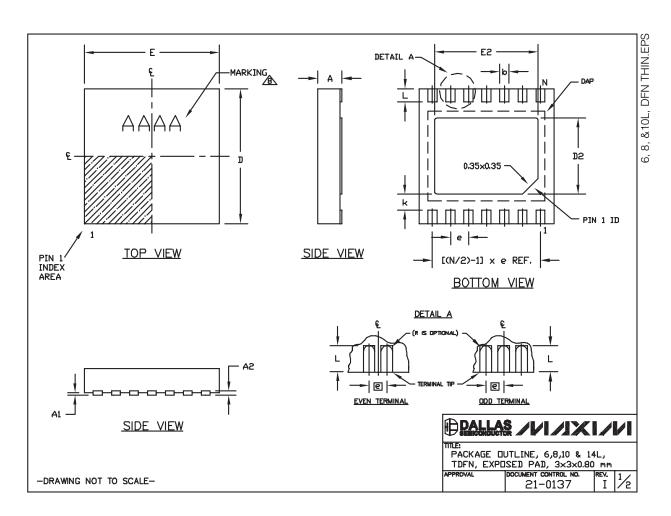
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
5 SOT23	Z5-2	<u>21-0113</u>
8 µMAX	U8E-2	<u>21-0107</u>
8 TDFN-EP	T833-2	<u>21-0137</u>


Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

NDTES:					
1. ALL DIMENSIONS ARE IN MILLIMETERS.		SYM	BOLS		
2 10' AND TEL' ARE REFERENCE DATUM AND DO NOT INCLUDE MOLD FLASH OR		MIN	NDM	MAX	
PROTRUSIONS, AND ARE MEASURED AT THE BOTTOM PARTING LINE. MOLD FLASH OR PROTRUSION SHALL NOT EXCEED 0.15mm ON "D" AND 0.25mm ON "E" PER SIDE.	A	-	-	1.10	
$\widehat{3}$ The lead width dimension does not include dambar protrusion. Allowable	A1	0.00	0.075	0.10	
DAMBAR PROTRUSION SHALL BE 0.07mm TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION,	A2	0.85	0.88	0.90	
A DATUM PLANE "H" LOCATED AT NOLD PARTING LINE AND COINCIDENT WITH LEAD,	A3	0.50 BSC			
VHERE LEAD EXITS PLASTIC BODY AT THE BOTTOM OF PARTING LINE.	6	0.30	-	0.45	
5 THE LEAD TIPS MUST LINE WITHIN A SPECIFIED TOLERANCE ZONE. THIS	b1	0.25	0.35	0.40	
TOLERANCE ZONE IS DEFINED BY TWO PARALLEL LINES. ONE PLANE IS THE SEATING PLANE, DATUM [-C-], AND THE OTHER PLANE IS AT THE SPECIFIED DISTANCE FROM (-C-) IN THE DIRECTION INDICATED. FORMED LEADS SHALL BE	c	0.15	-	0.20	
DISTANCE FROM (-C-) IN THE DIRECTION INDICATED. FORMED LEADS SHALL BE PLANAR WITH RESPECT TO DNE ANOTHER WITH 0.10mm AT SEATING PLANE.	c1	0.12	0.127	0.15	
6. THIS PART IS COMPLIANT WITH JEDEC SPECIFICATION MO-193 EXCEPT FOR THE "e"	D	2.80	2.90	3.00	
DIMENSION WHICH IS 0.95mm INSTEAD OF 1.00mm. THIS PART IS IN FULL	E		2.75 BSC		
COMPLIANCE TO EIAJ SPECIFICATION SC-74,	E1	1.55	1.60	1.65	
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. COPLANARITY SHALL NOT EXCEED 0.08mm. 	L	0.30	0.40	0.50	
8. VARPAGE SHALL NOT EXCEED 0.10mm.	e1		1.90 BSC		
). The terminal #1 identifier and terminal numbering convention shall	e		0.95 BSC		
CONFORME TELEVITY I IDENTIFIER AND TERMINAL AUGUSTRIAL \$1 DENTIFIER ARE CONFORM TO JESD 95-1 PP-012. DETAILS OF TERMINAL \$1 DENTIFIER ARE OPTIONAL, THE TERMINAL \$1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED	20	0*	4•	8*	
FEATURE.	aaa		0.20 -11 Z5-2		
$\cancel{10}$ marking is for package orientation reference only.	Ркд. с	odes: Z5	-1) 23-2		
11. ALL DIMENSIONS APPLY TO BOTH LEADED (-> AND LEAD FREE (+> PACKAGE CODES.					
	TITLE: PACK		INE, 5L TH:	XI/V In SDT23,	
-DRAWING NOT TO SCALE-	APPROVAL	DOCU	MENT CONTROL N 21-0113	0. REV. 2 C	


Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

Package Information (continued)

For the latest package outline information and land patterns, go to <u>www.maxim-ic.com/packages</u>.

COMMON	DIMENS	SIONS		PACKAGE VA	RIAT	IONS					
SYMBOL	MIN.	MAX.		PKG. CODE	Ν	D2	E2	e	JEDEC SPEC	b	[(N/2)-1] x e
А	0.70	0.80		T633-2	6	1.50±0.10	2.30±0.10	0.95 BSC	MO229/WEEA	0.40±0.05	1.90 REF
D	2.90	3.10		T833-2	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229/WEEC	0.30±0.05	1.95 REF
E	2.90	3.10		T833-3	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229/WEEC	0.30±0.05	1.95 REF
A1	0.00	0.05		T1033-1	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229 / WEED-3	0.25±0.05	2.00 REF
L	0.20	0.40		T1033-2	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229/WEED-3	0.25±0.05	2.00 REF
k	0.25	MIN.		T1433-1	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF
A2	0.20	REF.		T1433-2	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF
NOTES:			- 161								
1. ALL [2. COPL 3. WARF 4. PACK 5. DRAW 6. "N" I 7. NUME	ANARITY AGE SH AGE LEI ING CO S THE BER OF	shall Ngth/p/ Nforms Total N Leads	NOT EXC T EXCEEL ACKAGE N TO JED IUMBER (SHOWN /	. ANGLES IN CEED 0.0B m 0 0.10 mm. WIDTH ARE CO EC MO229, E EC MO229, E F LEADS. REF FOR REF RIENTATION R	m. DNSID XCEP EREN	DERED AS S T DIMENSIO CE ONLY.	NS "D2" AN		C(S). ND T1433-1 & T	1433–2.	
1. ALL [2. COPL 3. WARF 4. PACK 5. DRAW 6. "N" I 7. NUME	ANARITY AGE SH AGE LEI ING CO S THE BER OF	shall Ngth/p/ Nforms Total N Leads	NOT EXC T EXCEEL ACKAGE N TO JED IUMBER (SHOWN /	CEED 0.08 m 0 0.10 mm. WIDTH ARE CO EC MO229, E DF LEADS. ARE FOR REF	m. DNSID XCEP EREN	DERED AS S T DIMENSIO CE ONLY.	NS "D2" AN				6,8,10 & 1 D. 3×3×0.8

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	7/08	Initial release	—
1	9/08	Updated slew rate and added TDFN-EP package	1, 2, 6, 10, 11

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

is a registered trademark of Maxim Integrated Products, Inc.